Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.022
Filtrar
1.
Adv Mater ; : e2401620, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621414

RESUMO

Osteoclast hyperactivation stands as a significant pathological factor contributing to the emergence of bone disorders driven by heightened oxidative stress levels. The modulation of the redox balance to scavenge reactive oxygen species (ROS) emerges as a viable approach in addressing this concern. Selenoproteins, characterized by selenocysteine (SeCys2) as the active center, are crucial for selenium-based antioxidative stress therapy for inflammatory diseases. This study reveals that surface-active elemental selenium (Se) nanoparticles, particularly those derived from lentinan (LNT-Se), exhibit enhanced cellular accumulation and accelerated metabolism to SeCys2, the primary active Se form in biological systems. Consequently, LNT-Se demonstrates significant inhibition of RANKL-induced osteoclastogenesis and osteoclastic activity when compared to alternative Se species. Furthermore, in vivo studies underscore the superior therapeutic efficacy of LNT-Se over SeCys2, potentially attributable to the enhanced stability and safety profile of LNT-Se. Specifically, LNT-Se effectively modulates the expression of the selenoprotein GPx1, thereby exerting regulatory control over macrophage polarization, osteoclast activity inhibition, and the prevention of CIA/OVX-induced osteolysis. In summary, these results suggest that the prompt activation of selenoproteins by Se nanoparticles serves to suppress osteoclastogenesis and pathological bone loss by upregulating GPx1 to re-polarize macrophages. Moreover, the utilization of bioactive Se species presents a promising avenue for effectively managing bone disorders, with considerable potential for clinical translation. This article is protected by copyright. All rights reserved.

2.
Ecotoxicol Environ Saf ; 276: 116302, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608381

RESUMO

Benzene is a known contributor to human leukaemia through its toxic effects on bone marrow cells, and epigenetic modification is believed to be a potential mechanism underlying benzene pathogenesis. However, the specific roles of N6-methyladenosine (m6A), a newly discovered RNA post-transcriptional modification, in benzene-induced hematotoxicity remain unclear. In this study, we identified self-renewing malignant proliferating cells in the bone marrow of benzene-exposed mice through in vivo bone marrow transplantation experiments and Competitive Repopulation Assay. Subsequent analysis using whole transcriptome sequencing and RNA m6A methylation sequencing revealed a significant upregulation of RNA m6A modification levels in the benzene-exposed group. Moreover, RNA methyltransferase METTL14, known as a pivotal player in m6A modification, was found to be aberrantly overexpressed in Lin-Sca-1+c-Kit+ (LSK) cells of benzene-exposed mice. Further analysis based on the GEO database showed a positive correlation between the expression of METTL14, mTOR, and GFI and benzene exposure dose. In vitro cellular experiments, employing experiments such as western blot, q-PCR, m6A RIP, and CLIP, validated the regulatory role of METTL14 on mTOR and GFI1. Mechanistically, continuous damage inflicted by benzene exposure on bone marrow cells led to the overexpression of METTL14 in LSK cells, which, in turn, increased m6A modification on the target genes' (mTOR and GFI1) RNA. This upregulation of target gene expression activated signalling pathways such as mTOR-AKT, ultimately resulting in malignant proliferation of bone marrow cells. In conclusion, this study offers insights into potential early targets for benzene-induced haematologic malignant diseases and provides novel perspectives for more targeted preventive and therapeutic strategies.

3.
Mol Plant ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615195

RESUMO

During maize endosperm filling, sucrose not only serves as a source of carbon skeletons for storage-reserve synthesis, but also acts as a stimulus to promote this process. However, the molecular mechanism details about sucrose and endosperm filling are poorly understood. Here, we found that sucrose promoted the expression of endosperm-filling hub Opaque2 (O2), coordinating with storage-reserve accumulation. A protein kinase called SnRK1a1 attenuated O2-mediated transactivation, but sucrose released the suppression. SnRK1a1 phosphorylated O2 at Serine 41 (S41), negatively affecting its protein stability and transactivation ability. Mutation of SnRK1a1 resulted in larger seeds with increased kernel weight and storage reserves, while overexpression of SnRK1a1 had the opposite effect. Overexpression of the native O2 (O2-OE), phospho-dead (O2-SA) and phospho-mimetic (O2-SD) variants all increased 100-kernel weight. Although O2-SA seeds exhibited smaller kernel size, they synthesized higher starch and proteins, thereby resulting in larger vitreous endosperm and increased test weight. O2-SD seeds displayed larger kernel size, but had unchanged levels of storage reserves and test weight. O2-OE seeds represented an admixture of O2-SA and O2-SD, showing elevated kernel dimensions and nutrient storage. Overall, this study discovered a novel mechanism to modulate endosperm filling and S41 in O2 offered potential for engineering efforts to enhance storage-reserve accumulation and yield in maize.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38564127

RESUMO

Microbial nitrate reduction processes involve two competing pathways: denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA). This study investigated the distribution of DNRA in a sole sulfur-driven nitrogen conversion process using a laboratory-scale sequencing biofilm batch reactor (SBBR) through a series of batch tests with varying sulfide/nitrate (S/N) ratios. The results showed that DNRA became more dominant in the sulfide-oxidizing autotrophic denitrification (SOAD) process as the S/N ratio increased to 1.5:1, 1.7:1, and 2:1, reaching a peak of 35.3% at the S/N ratio of 1.5:1. Oxidation-reduction potential (ORP) patterns demonstrated distinct inflection points for nitrate and nitrite consumption under the SOAD-only conditions, whereas these points overlapped when DNRA coexisted with SOAD. Analysis of 16S ribosomal RNA identified Ignavibacterium, Hydrogenophaga, and Geobacter as the dominant genera responsible for DNRA during autotrophic nitrate reduction. The findings of the DNRA divergence investigation provided valuable insights into enhancing biological nitrogen removal processes, particularly when coupled with the anammox.

5.
Sci Total Environ ; 927: 171994, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561130

RESUMO

Global warming can significantly impact soil CH4 uptake in subtropical forests due to changes in soil moisture, temperature sensitivity of methane-oxidizing bacteria (MOB), and shifts in microbial communities. However, the specific effects of climate warming and the underlying mechanisms on soil CH4 uptake at different soil depths remain poorly understood. To address this knowledge gap, we conducted a soil warming experiment (+4 °C) in a natural forest. From August 2020 to October 2021, we measured soil temperature, soil moisture, and CH4 uptake rates at four different soil depths: 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm. Additionally, we assessed the soil MOB community structure and pmoA gene (with qPCR) at the 0-10 and 10-20 cm depths. Our findings revealed that warming significantly enhanced soil net CH4 uptake rate by 12.28 %, 29.51 %, and 61.05 % in the 0-10, 20-40, and 40-60 cm soil layers, respectively. The warming also led to reduced soil moisture levels, with more pronounced reductions observed at the 20-40 cm depth compared to the 0-20 cm depth. At the 0-10 cm depth, warming increased the relative abundance of upland soil cluster α (a type of MOB) and decreased the relative abundance of Methylocystis, but it did not significantly increase the pmoA gene copies. Our structural equation model analysis indicated that warming directly regulated soil CH4 uptake rate through the decrease in soil moisture, rather than through changes in the pmoA gene and MOB community structure at the 0-20 cm depth. In summary, our results demonstrate that warming enhances soil CH4 uptake at different depths, with soil moisture playing a crucial role in this process. Under warming conditions, the drier soil pores allow for better CH4 penetration, thereby promoting more efficient activity of MOB.

6.
Cancer Discov ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38591846

RESUMO

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide coactivator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that a TET2 inhibitor can eliminate the resistance to AR targeted therapies in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate cancer acquires lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity.

8.
Heliyon ; 10(7): e29163, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601522

RESUMO

This study delves into Ulcerative colitis (UC), a persistent gastrointestinal disorder marked by inflammation and ulcers, significantly elevating colorectal cancer risk. The emergence of single-cell RNA sequencing (scRNA-seq) technology has opened new avenues for dissecting the intricate cellular dynamics and molecular mechanisms at play in UC pathology. By analyzing scRNA-seq data from individuals with UC, our study has revealed a consistent enhancement of inflammatory response pathways throughout the course of the disease, alongside detailing the characteristics of endothelial cell damage within colitis environments. A noteworthy finding is the downregulation of Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase (LHPP), which exhibited a inversely correlate with STAT3 expression levels. The markedly reduced expression of LHPP in both the tissues and plasma of UC patients positions LHPP as a compelling target for therapeutic intervention. Our findings highlight the pivotal role LHPP could play in moderating inflammation, spotlighting its potential as a crucial molecular target in the quest to understand and treat UC.

9.
Eur J Pharmacol ; : 176600, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643834

RESUMO

Multiple sclerosis is an autoimmune disease that causes inflammatory damage to the central nervous system. At present, the pathogenesis of the disease is unknown. There is a lack of few effective therapy medications available. Therefore, it is necessary to further explore the pathogenesis of this illness and develop potential therapeutic drugs. Dabrafenib is potential therapeutic medicine for nervous system disease. In this study, we preliminarily studied the possible mechanism of dabrafenib in the treatment of multiple sclerosis from the perspective of ferroptosis. First, we observed that dabrafenib significantly improved symptoms of gait abnormalities, limb weakness or paralysis, and down-regulated levels of spinal cord inflammation in an experimental autoimmune encephalitis (EAE) model. Meanwhile, we also observed that dabrafenib could inhibit the proteins of ferroptosis in spinal cord tissue of EAE mice by western blot. The results of immunohistochemical analysis showed that the effect of dabrafenib on ferroptosis mainly occurred in microglia. Second, dabrafenib was demonstrated to be able to inhibit the S phase of the cell cycle, reduce ROS levels, and reinstate mitochondrial activity in the LPS-induced BV2 inflammatory cell model. Futhermore, we found that dabrafenib inhibits P-JAK2 and P-STAT3 activation by acting Axl receptor, which in turn prevents neurogenic inflammation in microglia. The co-stimulated BV2 cell model with LPS and Erastin also verified these findings. Ultimately, the Axl knockout mice used to construct the EAE model allowed for the confirmation that dabrafenib prevented ferroptosis in microglia by up-regulating Axl receptor, which reduced the inflammatory demyelination associated with EAE. In summary, our research demonstrates the advantages of dabrafenib in multiple sclerosis treatment, which can prevent ferroptosis in microglia in multiple sclerosis through up-regulating Axl receptor, thus halting the progression of multiple sclerosis.

10.
Emerg Microbes Infect ; : 2337677, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578315

RESUMO

ABSTRACTPreviously, we have reported a cohort of Japanese encephalitis (JE) patients with Guillain-Barré syndrome. However, the evidence linking Japanese encephalitis virus (JEV) infection and peripheral nerve injury (PNI) remains limited, especially the epidemiology, clinical presentation, diagnosis, treatment, and outcome significantly differ from traditional JE. We performed a retrospective and multicenter study of 1626 patients with JE recorded in the surveillance system of the Chinese Center for Disease Control and Prevention, spanning the years 2016 to 2020. Cases were classified into type 1 and type 2 JE based on whether the JE was combined with PNI or not. A comparative analysis was conducted on demographic characteristics, clinical manifestations, imaging findings, electromyography data, laboratory results, and treatment outcomes. Among 1626 laboratory confirmed JE patients, 230 (14%) were type 2 mainly located along the Yellow River in northwest China. In addition to fever, headache, and disturbance of consciousness, type 2 patients experienced acute flaccid paralysis of the limbs, as well as severe respiratory muscle paralysis. These patients presented a greater mean length of stay in hospital (children, 22 years [range, 1-34]; adults, 25 years [range, 0-183]) and intensive care unit (children, 16 years [range, 1-30]; adults, 17 years [range, 0-102]). The mortality rate was higher in type 2 patients (36/230 [16%]) compared to type 1 (67/1396 [5%]). The clinical classification of the diagnosis of JE may play a crucial role in developing a rational treatment strategy, thereby mitigating the severity of the disease and potentially reducing disability and mortality rates among patients.

11.
Heliyon ; 10(5): e26982, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468975

RESUMO

Context: Sanchi promotes wound healing by repressing fibroblast proliferation. Objective: This study examined the effect of Sanchi on keratinocytes (KCs) and microvascular endothelial cells (MECs) and rats with skin injury. Materials & methods: Hydrogels containing different concentrations of Sanchi extract were prepared to observe wound closure over 10 days. SD rats were divided into the control, Hydrogel, 5% Hydrogel, 10% Hydrogel, 10% Hydrogel + Ad5-NC, and 10% Hydrogel + Ad5-IL1B groups. KCs and MECs were induced with H2O2 for 24 h. Cell viability, apoptosis, and the levels of inflammation- and oxidative stress-related factors were examined. The effect of IL1B on wound healing was also evaluated. Results: Compared to the Control group (83% ± 7.4%) or Hydrogel without Sanchi extract (84% ± 8.5%), Hydrogel with 5% (95% closure ± 4.0%) or 10% Sanchi extract (98% ± 1.7%) accelerated wound healing in rats and attenuated inflammation and oxidative stress. Hydrogels containing Sanchi extract increased collagen deposition and CD31 expression in tissues. H2O2 (100 µM) induced injury in KCs and MECs, whereas Sanchi rescued the viability of KCs and MECs. Sanchi inhibited cell inflammation and oxidative stress and decreased apoptosis. As Sanchi blocked the NFκB pathway via IL1B, IL1B mitigated the therapeutic effect of Sanchi. Discussion and conclusion: Sanchi demonstrated therapeutic effects on wound healing in rats by promoting KCs and MECs activity. These findings provide valuable information for the clinical application of Sanchi, which needs to be validated in future clinical trials.

12.
Exp Ther Med ; 27(4): 151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476906

RESUMO

Osteoporotic vertebral compression fractures, often resulting from low-energy trauma, markedly impair the quality of life of elderly individuals. The present retrospective study focused on the clinical efficacy of unilateral percutaneous vertebroplasty (PVP) in the treatment of osteoporotic compression fractures. A total of 68 patients, representing 92 vertebral bodies, who underwent the unilateral PVP technique from March 2020 to January 2023 were evaluated. Key parameters such as visual analogue scale (VAS) values, Oswestry disability index (ODI) scores, Cobb angle measurements, and anterior vertebral height (AVH) were documented pre- and post-surgery. The mean follow-up period was 15.41±3.74 months. The mean pre-operative VAS score was 8.08±0.79, which was significantly reduced to 2.25±0.71 by 24 h post-surgery and stabilized at 1.58±0.51 by the final follow-up. The ODI showed a significant improvement from a pre-operative average of 67.75±7.91 to 19.74±2.90 post-surgery, and was maintained at a low level of 28.00±4.89 at the last assessment. Radiological evaluations revealed significant alterations in Cobb angle and AVH post-operation. Notably, during the follow-up, eight patients developed new compression fractures in different vertebral segments. In conclusion, the unilateral PVP method is safe and efficient for the management of osteoporotic vertebral compression fractures.

13.
Eur J Pharmacol ; 969: 176427, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428662

RESUMO

Acute ischemic stroke (AIS) is a leading cause of global incidence and mortality rates. Oxidative stress and inflammation are key factors in the pathogenesis of AIS neuroinjury. Therefore, it is necessary to develop drugs that target neuroinflammation and oxidative stress in AIS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), primarily expressed on microglial cell membranes, plays a critical role in reducing inflammation and oxidative stress in AIS. In this study, we employed a high-throughput screening (HTS) strategy to evaluate 2625 compounds from the (Food and Drug Administration) FDA library in vitro to identify compounds that upregulate the TREM2 receptor on microglia. Through this screening, we identified Baicalin as a potential drug for AIS treatment. Baicalin, a flavonoid compound extracted and isolated from the root of Scutellaria baicalensis, demonstrated promising results. Next, we established an in vivo mouse model of cerebral ischemia-reperfusion injury (MCAO/R) and an in vitro microglia cell of oxygen-glucose deprivation reperfusion (OGD/R) to investigate the role of Baicalin in inflammation injury, oxidative stress, and neuronal apoptosis. Our results showed that baicalin effectively inhibited microglia activation, reactive oxygen species (ROS) production, and inflammatory responses in vitro. Additionally, baicalin suppressed neuronal cell apoptosis. In the in vivo experiments, baicalin not only improved neurological functional deficits and reduced infarct volume but also inhibited microglia activation and inflammatory responses. Overall, our findings demonstrate the efficacy of Baicalin in treating MCAO/R by upregulating TREM2 to reduce inflammatory responses and inhibit neuronal apoptosis.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Camundongos , Animais , AVC Isquêmico/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Inflamação/tratamento farmacológico , Isquemia Encefálica/metabolismo , Microglia , Infarto da Artéria Cerebral Média/metabolismo
14.
Cancer ; 130(S8): 1524-1538, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38515388

RESUMO

BACKGROUND: Studies on various thrombopoietic agents for cancer treatment-induced thrombocytopenia (CTIT) in China are lacking. This study aimed to provide detailed clinical profiles to understand the outcomes and safety of different CTIT treatment regimens. METHODS: In this retrospective, cross-sectional study, 1664 questionnaires were collected from 33 hospitals between March 1 and July 1, 2021. Patients aged >18 years were enrolled who were diagnosed with CTIT and treated with recombinant interleukin 11 (rhIL-11), recombinant thrombopoietin (rhTPO), or a thrombopoietin receptor agonist (TPO-RA). The outcomes, compliance, and safety of different treatments were analyzed. RESULTS: Among the 1437 analyzable cases, most patients were treated with either rhTPO alone (49.3%) or rhIL-11 alone (27.0%). The most common combination regimen used was rhTPO and rhIL-11 (10.9%). Platelet transfusions were received by 117 cases (8.1%). In multivariate analysis, rhTPO was associated with a significantly lower proportion of platelet recovery, platelet transfusion, and hospitalization due to chemotherapy-induced thrombocytopenia (CIT) than rhIL-11 alone. No significant difference was observed in the time taken to achieve a platelet count of >100 × 109/L and chemotherapy dose reduction due to CIT among the different thrombopoietic agents. The outcomes of thrombocytopenia in 170 patients who received targeted therapy and/or immunotherapy are also summarized. The results show that the proportion of platelet recovery was similar among the different thrombopoietic agents. No new safety signals related to thrombopoietic agents were observed in this study. A higher proportion of physicians preferred to continue treatment with TPO-RA alone than with rhTPO and rhIL-11. CONCLUSIONS: This survey provides an overview of CTIT and the application of various thrombopoietic agents throughout China. Comparison of monotherapy with rhIL-11, rhTPO, and TPO-RA requires further randomized clinical trials. The appropriate application for thrombopoietic agents should depend on the pretreatment of platelets, treatment variables, and risk of bleeding. PLAIN LANGUAGE SUMMARY: To provide an overview of the outcome of cancer treatment-induced thrombocytopenia in China, our cross-sectional study analyzed 1437 cases treated with different thrombopoietic agents. Most of the patients were treated with recombinant interleukin 11 (rhIL-11) and recombinant thrombopoietin (rhTPO). rhTPO was associated with a significantly lower proportion of platelet recovery and platelet transfusion compared with rhIL-11.


Assuntos
Neoplasias , Trombocitopenia , Humanos , China , Estudos Transversais , Interleucina-11/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Estudos Retrospectivos , Trombocitopenia/induzido quimicamente , Trombocitopenia/tratamento farmacológico , Trombopoetina/uso terapêutico , Adulto Jovem , Adulto
15.
Artigo em Inglês | MEDLINE | ID: mdl-38383161

RESUMO

Methionine restriction (MR) has been shown to suppress tumor growth and improve the responses to various anticancer therapies. However, methionine itself is required for the proliferation, activation, and differentiation of T cells that are crucial for antitumor immunity. The dual impact of methionine, that influences both tumor and immune cells, has generated concerns regarding the potential consequences of MR on T cell immunity and its possible role in promoting cancer. In this review we systemically examine current literature on the interactions between dietary methionine, cancer cells, and immune cells. Based on recent findings on MR in immunocompetent animals, we further discuss how tumor stage-specific methionine dependence of immune cells and cancer cells in the tumor microenvironment could ultimately dictate the response of tumors to MR.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38373135

RESUMO

Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data. We then employed a threshold method to recognize the initial sitting and the stable standing phases. Finally, we designed a novel CNN-BiLSTM-Attention algorithm to identify the three transition phases, namely, the flexion momentum phase, the momentum transfer phase, and the extension phase. Fifteen subjects were recruited to perform sit-to-stand transition experiments under a specific paradigm. A combination of the acceleration and angular velocity data features for the sit-to-stand transition phase identification were validated for the model performance improvements. The integration of the CNN, Bi-LSTM, and Attention modules demonstrated the reasonableness of the proposed algorithms. The experimental results showed that the proposed CNN-BiLSTM-Attention algorithm achieved the highest average classification accuracy of 99.5% for all five phases when compared to both traditional machine learning algorithms and deep learning algorithms on our customized dataset (STS-PD). The proposed sit-to-stand phase recognition algorithm could serve as a foundation for the control of wearable exoskeletons and is important for the further development of intelligent wearable exoskeleton rehabilitation robots.


Assuntos
Exoesqueleto Energizado , Dispositivos Eletrônicos Vestíveis , Humanos , Movimento , Postura Sentada , Posição Ortostática
17.
Drug Dev Ind Pharm ; 50(3): 236-247, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38318700

RESUMO

CONTEXT: Determining solubility of drugs is laborious and time-consuming process that may not yield meaningful results. Amorphous solid dispersion (ASD) is a widely used solubility enhancement technique. Predictive models could streamline this process and accelerate the development of oral drugs with improved aqueous solubilities. OBJECTIVE: This study aimed to develop a predictive model to estimate the solubility of a compound from the ASDs in polymer matrices. METHODS: ASDs of model drugs (acetazolamide, chlorothiazide, furosemide, hydrochlorothiazide, sulfamethoxazole) with model polymers (PVP, PVPVA, HPMC E5, Soluplus) and a surfactant (TPGS) were prepared using hotmelt process. The prepared ASDs were characterized using DSC, FTIR, and XRD. The aqueous solubility of the model drugs was determined using shake-flask method. Multiple linear regression was used to develop a predictive model to determine aqueous solubility using the molecular descriptors of the drug and polymer as predictor variables. The model was validated using Leave-One-Out Cross-Validation. RESULTS: The ASDs' drug components were identified as amorphous via DSC and XRD Studies. There were no significant chemical interactions between the model drugs and the polymers based on FTIR studies. The ASDs showed a significant (p < 0.05) improvement in solubility, ranging from a 3-fold to 118-fold, compared with the pure drug. The developed empirical model predicted the solubility of the model drugs from the ASDs containing model polymer matrices with an accuracy greater than 80%. CONCLUSION: The developed empirical model demonstrated robustness and predicted the aqueous solubility of model drugs from the ASDs of model polymer matrices with an accuracy greater than 80%.


Assuntos
Polímeros , Água , Solubilidade , Cristalização , Polímeros/química , Água/química , Tensoativos
18.
Immun Inflamm Dis ; 12(2): e1132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38415922

RESUMO

BACKGROUND: Neuropathic pain (NP) is a chronic pathological pain that affects the quality of life and is a huge medical burden for affected patients. In this study, we aimed to explore the effects of secreted phosphoprotein 1 (SPP1) on NP. METHODS: We established a chronic constriction injury (CCI) rat model, knocked down SPP1 via an intrathecal injection, and/or activated the extracellular signal-regulated kinase (ERK) pathway with insulin-like growth factor 1 (IGF-1) treatment. Pain behaviors, including paw withdrawal threshold (PWT), paw withdrawal latency (PWL), lifting number, and frequency, were assessed. After sacrificing rats, the L4-L5 dorsal root ganglion was collected. Then, SPP1 levels were determined using quantitative polymerase chain reaction (qPCR) and western blot analysis. The levels of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6, IL-10, epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-ß were determined using qPCR and enzyme-linked immunosorbent assay. The levels of ERK pathway factors were determined via western blot analysis. RESULTS: We found that CCI decreased PWT and PWL, increased the lifting number and frequency, and upregulated SPP1 levels. The loss of SPP1 reversed these CCI-induced effects. Additionally, CCI upregulated IL-1ß, TNF-α, IL-6, EGF, and VEGF levels, downregulated TGF-ß levels, and activated the ERK pathway, while silencing of SPP1 abrogated these CCI-induced effects. Moreover, IGF-1 treatment reversed the effects of SPP1 loss. CONCLUSIONS: The data indicate that silencing SPP1 attenuates NP via inactivation of the ERK pathway, suggesting that SPP1 may be a promising target for NP treatment.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neuralgia , Humanos , Animais , Ratos , Fator A de Crescimento do Endotélio Vascular , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Epidérmico , Osteopontina , Interleucina-6 , Qualidade de Vida , Neuralgia/etiologia , Interleucina-1beta , Transdução de Sinais , Nervo Isquiático
19.
Immunopharmacol Immunotoxicol ; 46(2): 172-182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38174705

RESUMO

OBJECTIVE: The activation of the NLRP3 inflammasome has been implicated in male infertility. Our study aimed to investigate the therapeutic role of Thiolutin (THL), an inhibitor of the NLRP3 inflammasome, on oligoasthenospermia (OA) and to elucidate its mechanisms. MATERIALS AND METHODS: Semen from 50 OA and 20 healthy males were analyzed to assess the sperm quality and levels of inflammatory markers. Their correlation was determined using Pearson's correlation coefficient. The BALB/c mice were intraperitoneal injected by cyclophosphamide at 60 mg/kg/day for five days to induce OA, followed by a two-week treatment with THL or L-carnitine. Reproductive organ size and H&E staining were determined to observe the organ and seminiferous tubule morphology. ELISA and western blotting were utilized to measure sex hormone levels, inflammatory markers, and NLRP3 inflammasome levels. Furthermore, male and female mice were co-housed to observe pregnancy success rates. RESULTS: OA patients exhibited a decrease in sperm density and motility compared to healthy individuals, along with elevated levels of IL-1ß, IL-18 and NLRP3 inflammasome. In vivo, THL ameliorated OA-induced atrophy of reproductive organs, hormonal imbalance, and improved sperm density, motility, spermatogenesis and pregnancy success rates with negligible adverse effects on weight or liver-kidney function. THL also demonstrated to be able to inhibit the activation of NLRP3 inflammasome and associated proteins in OA mice. DISCUSSION: THL can improve sperm quality and hormonal balance in OA mice through the inhibition of NLRP3 inflammasome activation. Thus, THL holds promising potential as a therapeutic agent for OA.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Masculino , Humanos , Feminino , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sêmen/metabolismo , Ciclofosfamida/efeitos adversos , Fertilidade , Espermatozoides/metabolismo , Pirrolidinonas
20.
Nat Commun ; 15(1): 622, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245515

RESUMO

Alphaviruses are arboviruses transmitted by mosquitoes and are pathogenic to humans and livestock, causing a substantial public health burden. So far, several receptors have been identified for alphavirus entry; however, they cannot explain the broad host range and tissue tropism of certain alphaviruses, such as Getah virus (GETV), indicating the existence of additional receptors. Here we identify the evolutionarily conserved low-density lipoprotein receptor (LDLR) as a new cell entry factor for GETV, Semliki Forest virus (SFV), Ross River virus (RRV) and Bebaru virus (BEBV). Ectopic expression of LDLR facilitates cellular binding and internalization of GETV, which is mediated by the interaction between the E2-E1 spike of GETV and the ligand-binding domain (LBD) of LDLR. Antibodies against LBD block GETV infection in cultured cells. In addition, the GST-LBD fusion protein inhibits GETV infection both in vitro and in vivo. Notably, we identify the key amino acids in LDLR-LBD that played a crucial role in viral entry; specific mutations in the CR4 and CR5 domain of LDLR-LBD reduce viral entry to cells by more than 20-fold. These findings suggest that targeting the LDLR-LBD could be a potential strategy for the development of antivirals against multiple alphaviruses.


Assuntos
Infecções por Alphavirus , Alphavirus , Culicidae , Animais , Humanos , Alphavirus/genética , Internalização do Vírus , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/metabolismo , Infecções por Alphavirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...